
44th SEFI Conference, 12-15 September 2016, Tampere, Finland

Using executable flowchart for teaching C language

Sehyeong Cho
Professor,

MyongJi University
Yong In, Korea

E-mail: shcho@mju.ac.kr

Conference Key Areas: Please select three Conference Key Areas
Keywords: programming instruction, visual programming, flowchart

INTRODUCTION
Teaching computer programming to students is a daunting task, especially to those
without any background or experience in computer programming. Even simple
assignment statements or arithmetic operations can be difficult for them to understand.
In our experience, roughly 25% of students fail the course and get frustrated that they
are not fit for programming after all.

There are many reasons why programming is so difficult for beginners. First, there are
linguistic issues. The syntax of a programming language is very different from that of
a natural language. Trivial grammatical errors can result in cryptic error messages that
are hard to interpret. The students also encounter semantic difficulties. It is a challenge
to get an accurate understanding of the operational semantics (i.e., effects) of the
programming language constructs, which makes it difficult to predict the accurate result
of a program code. This, in turn, makes it difficult to write a program. Second,
regardless of the difficulty of programming language at hand, the problem-solving
process itself is inherently complicated.

This paper proposes to use an extended flowchart called CFL as the first programming
language before beginning to teach general programming language such as C, and
argues that it can help students learn C programming language better. We describe
the language and system, then how it was applied, and show the results.

1 RELATED WORK
There are many different approaches to facilitating the acquisition of programming
languages. For instance, in order to avoid the complexity of full-fledged programming
languages, one can use simplified programming languages, such as Mini-Java[1]. In
fact, mini-languages have been used for quite a long time[2]. However, this approach

44th SEFI Conference, 12-15 September 2016, Tampere, Finland

does not meet our requirements, since we need to teach a full language after all. Iconic
programming languages, such as Mindstorm NXT-G[3] or Alice[4], can be another
possibility. Iconic programming is suitable for a gentle introduction to computer
programming and it has been reported to help keep students interested[4]. Flowchart
programming (called FLINT) has been used elsewhere as an aid to help students
understand the concept and to improve their problem-solving skills[5]. Raptor[6] is
another well-designed flowchart programming tool used for teaching the concept and
problem-solving skills, but there is a big gap between flowcharts and commercial
programming languages, and therefore transition to actual programming language
such as C is time-consuming and requires extra effort. Neither FLINT, nor Raptor were
suitable for our purpose because we wanted the students to smoothly transition to C
language.

2 CFL: C-LIKE FLOWCHART LANGUAGE
2.1 Overview of CFL
CFL stands for “C-like Flowchart Language,” and is an executable flowchart-based
programming language and system. CFL is developed to help students learn
programming, as well as to understand what’s happening during program execution.
In particular, it is designed to help prospective C-language learners. CFL is basically a
flowchart-based language. Therefore it is easy to understand the flow of execution.
CFL is also an integrated development environment, and therefore has execution and
debugging capabilities. There is no compilation process

2.2 Elements of CFL
A CFL program consists of nodes and directed arcs connecting the nodes. There are
basic nodes and composite nodes. There are four types of basic nodes: processing,
I/O, decision, and function nodes. However, decision nodes can only be used in
composite nodes such as ‘while’ composite, to enforce structured programming. Table
1 summarizes CFL basic nodes. For easier transition from CFL to C language, the
syntax of CFL is intentionally aligned with C language syntax. These include arithmetic
expressions, array notation, and input/output functions such as “scanf” or “getchar.”

Table 1. CFL basic node types

type processing I/O Decision start/end

typical
example(s)

note
+, -, *, /, %

function call,
return

putchar, scanf
printf

!=, ==, > ,<,
>=, <= , &&, ||

only one main
function

Composite nodes are used to group particular combination of basic nodes to give
structures, such as “if-then-else”, “for”, “while”, and functions. Structured programming

44th SEFI Conference, 12-15 September 2016, Tampere, Finland

is naturally enforced by composite nodes. Arbitrary connections (i.e., 'goto') are not
allowed.

Fig. 1. Composite notes: "if", "while", "for", and function

2.3 Executing CFL
CFL is executable, and, therefore, has features related to execution. These features
include: one accumulator register, one floating point accumulator, 12 integer variables
that can be changed to float variables, two predefined arrays, the input buffer, the
output window, and debugging buttons – step-in, step-over, run, and stop. During the
execution, students can watch the inner workings of the program: current node is
marked red, changed values are also marked, and the function call stack is depicted
with actual parameters.

Fig. 2. Screen shot of CFL

44th SEFI Conference, 12-15 September 2016, Tampere, Finland

3 APPLYING CFL TO C LANGUAGE COURSES
3.1 Preparation
We had two classes of 4 credit-hour C-language programming courses with exactly
the same class sizes - 35 students (maximum allowed size for a programming course
with a lab). The students were taught by the same instructor on the same weekdays,
but on different hours. One class - the control group - was taught by the regular C
language syllabus. The other group - the treatment group, or the test group - was first
taught CFL programming for four weeks, before they started learning C language.
Table 2 summarizes the semester schedule of the two classes. Although the course is
intended for freshmen, there were quite a few students with some prior experience in
C programming, we excluded them from the analysis. This resulted in a total of 29 first-
year students in the control group and 22 in the test group.

Table 2. Summary of schedules

Week Control group (C only) Treatment group (CFL + C)

1 Intro to Computers, Prep for laboratory (incl.
Linux and vim)

Intro to Computers, CFL basics,
operations, I/O

2 Beginning C programming CFL conditional, for loop

3 Integers and I/O CFL arrays, functions and recursion

4 conditionals CFL graphics and game project

5 while/for loops Linux and vim, Integers and I/O,

6 Functions conditionals, while/for loop

7 Arrays and applications Functions, arrays

8 Handling strings, mid-term arrays, mid-term

9 2-dim arrays strings, 2-dim arrays

19 files files

11 structures structures

12 bit handling bit handling

13 recursion recursion

14 pointers and dynamic allocation pointers and dynamic allocation

15 linked lists linked lists

16 Final Exam Final Exam

3.2 The Experiment
To see if learning CFL has any effects, either positive or negative, on learning C
language programming, we tested the students with three identical tasks in the final
exam, and observed their overall performance throughout the semester. The students
were not informed about the ongoing experiment.

44th SEFI Conference, 12-15 September 2016, Tampere, Finland

Task A

Problem description:
Let X be a sequence of integers starting with 1, 2, 4, … and the differences between
consecutive terms make an arithmetic progression of 1, 2, 3, ….
Let Y be a sequence of integers that starts with 1, 2, 4, 8, … and each pair of
consecutive numbers in the sequence has a difference defined by sequence X.
Write a program to generate sequence Y less than 100.

Task A requires the understanding of how to write a loop. In the control group, 12 of
29 freshmen passed the test, compared to 15 of 22 in the treatment group. Thus, the
performance in the treatment group was significantly higher than that of the control
group (68.2% vs. 41.4%) as shown in Figure 3.

Fig. 3. Performance comparison: task A

Task B

Problem description:
Given an array of integers already in ascending order, write a program to insert an
arbitrary new number into an existing set of numbers, such that the result is in an
ascending order. However, you should follow the order given as follows: 1) determine
what position the new number should go in; 2) shift all numbers greater than the new
number; and 3) actually insert the new number.

The second task is a part of a sorting program that requires knowledge of and
competence in handling 1-dimensional arrays. Both groups experienced ‘bubble sort’
during the semester. Sorting program is so simple that it is quite possible to memorize
the code. In order to prevent “memorizing the solution”, we provided specific
constraints for sorting algorithm. In this test, the treatment group again outperformed
the control group. Only27.6% of the freshmen in the control group solved the problem,
while 45.5% in the treatment group solved it. Figure 4 compares the pass ratios for the
second test.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Control group Test group

44th SEFI Conference, 12-15 September 2016, Tampere, Finland

Fig. 4. Performance comparison on task B

Task C

Problem description:
Given a representation of Omok (a.k.a., Gomoku) game in a 2-dimensional array,
write a function to determine if a player has a winning configuration, i.e., 5 in a row.

Task C is to fill in some missing part of Omok game. For those who are not familiar
with this game, omok is played by two players, black and white, taking turns to put a
white or black stone until one of the player has 5 in a row, either straight or diagonally.
This problem requires handling of 2-dimensional arrays. On this task, the performance
in the two groups was almost identical: 17 out of 29 students (58.6%) in the control
group and 13 out of 22 students (59.1%) coped with the task.
Task C differed from tasks A and B in that the students were given the same problem
as homework assignment before, which might explain why the performance of the two
groups was similar.

Fig. 5. Performance comparison on task C

The overall performance
The treatment group outperformed the control group on two out of three problems in
the exam. More importantly, in the end of the semester, far more students in the

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Control group Test group

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Control group Test group

44th SEFI Conference, 12-15 September 2016, Tampere, Finland

treatment group passed the course. Specifically, 90.9% of the treatment group (i.e.,
those who learned CFL before learning C language) passed the course. By contrast,
only 72.4% of the control group passed the course. The average scores of exams are
28.0 for control group and 40.9 for test group in a 100 scale. The pass ratio of the
course in recent 3 years amounts to 74%. Therefore, 72.4% can be considered quite
normal, while 90.9% can be considered exceptional.

Fig. 6. Course pass ratios of the two groups

Fig. 7. Average scores of the two groups

4 SUMMARY AND FUTURE WORK
Our results show that the students who are taught CFL before learning C language
eventually outperform those who learned C programming from the beginning. We ran
a t-test analysis in Exel to see if the statistics is meaningful. The t Stat > t Critical two-
tail, therefore we reject the null-hypothesis. In other words, it is unlikely that the
difference of scores of the two classes is purely by chance.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Control group Test group

0

10

20

30

40

50

60

70

Control group Test group

44th SEFI Conference, 12-15 September 2016, Tampere, Finland

Table 3. t-Test results

We believe that the reason why we benefit from CFL is because CFL is in fact a C
language in (graphical) disguise. We experienced that the students who learn CFL
have more fun and do better in terms of “thinking” of the solution, because of the
graphical nature of the language and the visual execution environment. Furthermore,
the competence acquired with CFL does not seem to be diminished later by the
complexity of the C language syntax, for once one understands how to do something
in CFL, one can easily do the same thing in C language.

Current version as of writing this paper is v.3.06, and we are currently working on
Object-oriented flowchart, for teaching Java instead of C language.

REFERENCES

[1] Roberts, E. “An Overview of MiniJava”, ACM SIGCSE Bulletin 33 (1), 2001, pp.
1-5.

[2] Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., and Miller, P.

“Mini-languages: A Way to Learn Programming Principles”, Education and
Information Technologies 2 (1), 1997, pp. 65-83.

[3] Swan, D. “Programming Solutions for the LEGO Mindstorms NXT,” Robot

magazine, 2010, p. 8.

[4] Sattar A., Lorenzen T. “Teach Alice programming to non-majors”, ACM
SIGCSE Bulletin 41(2), pp. 118-121.

[5] Crews, T. “the Flowchart interpreter for Introductory Programming Courses”,
Frontiers in Education Conference, 1998. Pp.307-312

[6] Martin C., Carlisle et al. “RAPTOR: introducing programming to non-majors with
flowcharts”, Journal of Computing Sciences in Colleges 19(4), 2004, pp. 52-60

Variable 1 Variable 2
Mean 20.44 13.98
Variance 93.45 67.47
Observations 22 29
Hypothesized Mean Difference 0
t Stat 2.577183
P(T<=t) one-tail 0.006511
t Critical one-tail 1.676551
P(T<=t) two-tail 0.013022
t Critical two-tail 2.009575

